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Abstract
A large part of statistical mechanics is concerned with the determination of
condensed matter structure on the basis of known microscopic interactions.
An increasing emphasis has been put on the opposite situation in the last
decades as well, where structural data, e.g. pair-distance statistics, are known
from diffraction experiments, and one looks for the corresponding interaction
functions. The solution of this inverse problem was searched for within the
integral equation theories of condensed matter in the early investigations, but
before long computer simulation assisted methods were suggested. The interest
in this field showed an increasing trend after some attempts appeared in the late
1980s. Several methods were published in the 1990s, and one–two methods
appear annually nowadays.

In this paper a comprehensive and historical overview is given on the
solution of the inverse problem with simulation assisted methods. Emphasis
is put on the theoretical grounds of the methods, on the choice of possible input
structural functions, on the numerically local or global schemes of the potential
modifications, on some advantages and limits of the different methods and on
the scientific impact of the methods.

1. Introduction

Generally, for the calculation of thermo-physical data two attributes of liquids are included in
the statistical mechanical equations: the structure of the system and the interaction among the
constituents. If one knows both of them, the calculation recipes are usually straightforward. It
was suspected many years ago that there should be some relation between the structure and the
potential. The knowledge of one of these attributes should be enough to describe the systems
entirely. The first approximations started from the interactions. Integral equation theories were
developed, and many features of liquids were determined using them. This field cannot be
termed as a new one; for example, the excellent book by Hill was published 50 years ago [1].
The computational modelling or simulation dates back to these years, as well. The two basic
methods, Monte Carlo simulation [2] and molecular dynamics [3], were published in 1953 and
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1958. Both theoretical and computational methods provided results on the structure for known
interactions. The theoretical methods were pushed into the background by the more or less
exact computational ones in the last decades. In spite of this, there are many systems in which
the finite computational capacity hinders the simulations, and one can get only theoretical data,
e.g. on colloid and biological systems.

The investigations in the other direction, in the determination of the interactions for known
structures, were started a few years later. The initiative work of Johnson, Hutchinson and
March was announced in 1963 [4] and was fully published in 1964 [5]. They calculated
the interaction potentials of several metals by the use of the Born–Green hierarchy with the
Kirkwood superposition approximation and by the use of the Percus–Yevick theory. Their
method was followed by many applications on different systems. The integral equation
theories were varied (e.g. hypernetted chain, modified hypernetted chain, etc), the starting
data were changed (real space and inverse space functions), and also the numerical methods
were different. We do not review these theoretical approaches, because our paper concerns
simulation assisted methods. Details of the applications of the integral equation theories can be
found in the literature, whereof we cite only a probably arbitrary list [4–15].

Up to this point we have used the phrases ‘structure’ and ‘interaction’. Of course, these
concepts should be described clearly. The distribution function theories of liquids provides well
defined functions for isotropic homogenous liquids (see e.g. [1, 14, 16]). The pair-correlation
function, g(r), is proportional to the probability of finding a particle at scalar distance r
from another particle with respect to the average density of the system. In multi-component
systems, one can define partial functions, gαβ(r)s. Here, the central particle is an α-type one
and the other one is a β-type one. The real-space pair-correlation function can be Fourier
transformed into inverse space. The inverse-space function is the structure factor, S(q). The
two transformations are shown in equations (1) and (2).

S(q) = 1 + 4πρ

∫ ∞

0
r 2

[
g (r) − 1

] sin(qr)

qr
dr (1)

g(r) = 1 + 1

2π2ρ

∫ ∞

0
q2

[
S(q) − 1

] sin(qr)

qr
dr (2)

where ρ means the number density. The structure factor can be determined in diffraction
experiments. Theoretically, the real-space and the inverse-space functions contain the same
information and the transformation is unique in both directions. Practically, it is not easy to
maintain these features between the two functions. In reality the functions are known at discrete
values and contain statistical or experimental errors. The transformation of simulated g(r)s to
S(q)s seems to be less defective nowadays, because the computational sources make it possible
to simulate large systems on a sufficiently long timescale. This means that one can get g(r)

functions with correctly decayed long-range part, with small statistical uncertainty [17, 18] and
with an adequately fine grid. In contrast, experimental data often contains reasonable error,
because one has to remove or correct many factors, e.g. irrelevant diffraction interactions. The
situation is more sophisticated under extreme conditions. Furthermore, one measures a linear
combined signal of the partial structure factors in molecular and multi-component systems. It
is known in calculus that the solution of linear equations is extremely sensitive to any error of
the input data. The linear combination of the partials to the total functions is more robust in the
modelling case.

In the case of molecular systems, one can define molecular pair-distribution functions,
where the orientation of the two molecules appears in the functions. These molecular functions
are frequently used for rigid molecules. For flexible molecules and for the cases where an
experimental comparison is important, the so-called site–site representation can be used. Here
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the meaning of the partial pair-correlation functions is similar to the multi-component case and
α and β indices mean the different atomic types.

One can define higher-order correlation functions as well. Traditionally, the most
important higher-order correlation function is the triplet one. g(r, s, t) means the relative
possibility of finding three particles (1, 2 and 3) at the r = r12, s = r13 and t = r23 distances
with respect to the average density.

The definition of interactions for liquid systems can be found in most of the
textbooks [14, 16, 19, 20]. In classical modelling of liquids one can start with a series expansion
of the total interaction to one-, two-, three-, etc particle interactions. The calculation of the
higher-order terms is expensive. It is usual to stop at the pair, or occasionally at the triplet–
particle interactions. However, the neglected terms have large impact. Therefore, the net effect
of the higher-order terms is tried to be incorporated into the pair interaction. The resulted
pair-interaction function is called effective pair potential (u(r)). It differs remarkably from
the simple gas-phase two-particle interaction. The simplification limits the number of the real
systems that can be modelled with high accuracy. A slight improvement can be achieved with
the addition of three-particle interactions, e.g. for covalent systems.

In our paper we would like to present the state of the art of the simulation assisted potential
refinement methods, which uses diffraction experimental data. We have limited ourselves to
these inputs, since there is a special unique feature of these experimental data. According to
our knowledge, no other experimental data have this attribute.

In 1974, Henderson [16, 21] proved that if a system can be described solely by pair-wise
additive pair interactions and the system is in equilibrium at a given state point (e.g. temperature
and volume), there is a unique and mutual correspondence of the pair-correlation function and
the pair potential. The uniqueness is valid up to an arbitrary constant in the pair potential that
is set usually to give zero interaction at infinite distance.

g(r) ⇔ u(r) + constant. (3)

The inverse theorem was proved and interpreted several times: by Evans [11, 22], Zwicker
and Lovett [23], Baranyai and Tóth [24], and numerically by Jain et al [25]. The unique
relationship is not limited to pair interactions. It can be extended up to any higher-order
distribution and potential functions, if the system can be described entirely by the set of these
interactions.

n∑
i=1

gi ⇔
n∑

i=1

ui + constant, (4)

where the lower indices denote the order of the interactions and distribution functions. For
example, if a system can be described with pair- and triplet-potential functions, the knowledge
of the pair- and triplet-correlation functions is enough to determine the interactions (both the
pair and the triplet ones). Sometimes it is confused with the statement that, if a system can be
described with pair- and triplet-potential functions, the knowledge of solely the pair-correlation
functions is enough to determine the interactions (either the pair interaction or both the pair and
triplet ones). The latter is not stated in the inverse theorem and it does not seem to be valid.
There seems to be a consensus that the information content of pair-distance statistics is not
enough to derive any reliable triplet interactions (e.g. [25]). Anyway, one may try to determine
higher-order interactions in the knowledge of solely pair-correlation functions, but the resulting
triplet interactions should be checked carefully and compared to relevant experimental data.

The inverse theorem is valid for molecular systems as well, if molecular distribution and
interaction functions are used. In the case of the site–site representation, the uniqueness is not
strictly valid. It is only practically usable, because the site–site distribution functions can be
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obtained from the molecular distribution function by integration over some variables, causing
a loss of information [14]. In the case of multi-component systems consisting of independent
atoms, the inverse theorem is exactly valid in the site–site representation as well.

The uniqueness theorem emphasizes the diffraction data among the other experimental data
in the determination of potential functions. Of course, one can find many attempts for other
data, e.g. thermo-physical ones. There are plenty of simulation assisted potential-refinement
recipes on these other data [26–32], whereof some are analogous to the methods described in
our paper (e.g. [32]).

The paper is organized as follows. First we present the different methods in chronological
order. Then we group the methods and we detail the main features. The comparison of the
different methods is put in a separate section together with a short overview on the impact and
the application of the methods.

2. Historical overview

In spite of the attempts to solve the inverse problem by theoretical methods and the success of
traditional computational modelling in the 1960s and early 1970s, the first simulation assisted
method for potential determination was published by Schommers only in 1973 [33]. He
proposed a method in which an initial guess of an interaction potential was iteratively refined
by comparing the results of simulations at the given i th variant of the potential to experimental
pair-correlation functions. The study was really a pioneering one: only few applications and
references were devoted to this method, and it passed almost unnoticed. This period was
part of a very fruitful and progressive time for the theoreticians, who used integral equation
theories for the solution of the inverse problem. Perhaps a solution with computer simulations
seemed to be marginal at that time. Ten years later, Schommers published another paper
on the same method [13], in which he compared his method to integral equation theories.
Perhaps this paper initiated Levesque, Weiss and Reatto to elaborate a more sophisticated
method (LWR method) [34]. They proposed a scheme for the potential update based on the
modified hypernetted chain approximation. They claimed that their method was superior to
the Schommers method and to popular integral equation methods. They aroused the interest of
the scientific community, and they were commented on, as well [35–37]. The number of the
applications increased. For example, Dzugutov et al proposed a manual scheme in 1988 [38],
in which the potential was modified in each iteration by empirical intuition. One year later he
applied the LWR scheme and found it feasible [39].

The reverse Monte Carlo (RMC) simulation method was published in 1988 [40]. It came
into general use among the experts of diffraction methods. The RMC method did not solve the
inverse problem. It stopped somehow at the half way. Using this method one creates three-
dimensional configurations of particles, which are more or less consistent with the diffraction
data. The method initiated debates and discussions, and turned the scientific interest to the
inverse problem. Two theoretical papers appeared at that time on the inverse problem [22, 23]
and also the uniqueness of the generated configurations were examined [41].

In 1994 the LWR method was generalized to multi-component systems [42]. In 1995 a
new scheme was published by Lyubartsev and Laaksonen [43]. They broke away from the
integral equation theoretical background. They proposed a numerical mathematical formula,
in which the potential modification is based on the partial derivatives of the pair-correlation
function in respect to the potential parameters. Their method is based on the solution of linear
equations. It seemed to be less robust than the Schommers and LWR schemes on experimental
data. Subsequently Lyubartsev and Laaksonen proposed numerical tricks to overcome the
deficiencies [44–46].
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As will be shown later, the most widely spread method was published in its original version
by Soper in 1996 [17]. It was a reincarnation of the Schommers method generalized to multi-
component systems and strengthened with numerical methods to become robust (damping, use
of auxiliary potentials). Soper realized the possible advantages of his method over the widely
used RMC technique, and made an effort to develop a usable software kit for the routine
evaluation of diffraction data with his method. A rather large number of applications were
published before long, and the algorithm was modified to be able to use directly on partial
structure factors [47] and on total structure factors [48].

A different approach was proposed by Tóth and Baranyai in 1999 [49, 50]. A direct
(non-iterative) method was elaborated and tested, in which three-dimensional configurations
were created using the RMC method, and the pair- and the triplet-correlation functions
were calculated and were used as the inputs of the Born–Green–Yvon equation (see
e.g. [1]). Unfortunately, the RMC method samples the configuration space in a distorted
manner [24, 49, 51], and the potentials obtained were not entirely correct.

The Lyubartsev–Laaksonen method was generalized by Tóth in 2001 [52] and in 2003 [53].
The essence of the generalization was to rewrite the formulae to be used directly on total S(q)s
and to avoid the solution of linear equations. In the newer version, the method was able to fit
other experimental data, as well. Rutledge proposed a different theoretical approach to solve
the inverse problem [54]. On the basis of theory of polydisperse semigrand canonical ensemble,
he used a Monte Carlo simulation method to derive pair potentials. Despite the new theoretical
concept, the final method was very similar to the Schommers one embedded in a semigrand
canonical Monte Carlo method. Rutledge replaced the clearly distinguishable iteration steps of
the Schommers method by one long Monte Carlo simulation, in which the potential was refined
more continuously. In 2003, Almarza and Lomba chose a numerical approach to create a new
algorithm [55]. They also applied a simulation with a continuously refined potential scheme,
and they proposed a numerically controlled simple form for the potential modification. In the
original version, the input data were the partial g(r)s, but later they proposed a method with
partial S(q) inputs [56]. The simplicity of their methods was a good basis to extend it to triplet
interactions, as well [57]. A non-equilibrium Monte Carlo approach was established by Wilding
in 2003 [58]. His method based on the study of Rutledge extended with similar simplification,
as was proposed by Almarza and Lomba. A generalized Monte Carlo approach was suggested
to fit any kind of distribution, which was sensitive to the variation of function that explicitly or
implicitly appeared in the acceptance criteria of Monte Carlo simulations.

The last items do not fully belong to the simulation assisted methods of solving the inverse
problem. The force-matching method of Izvekov et al [59] was intended for a different task. It
projected the many-body force field of quantum calculations onto pair interactions. The neural
network method of Tóth et al [60] belongs to the solutions of the inverse problem, but there
is not any simulation during the application of the method. Several thousand u(r)–S(q) pairs
were calculated by molecular dynamics and these function pairs were used to train artificial
neural network. The trained network can be used as a black box to get approximate potential
functions on the basis of experimental S(q)s.

3. Details of the methods

3.1. Schommers and Soper

Schommers proposed an iterative method [13, 33] to get pair potentials for known experimental
pair-correlation functions. An iterative step consisted of a molecular dynamics or Monte Carlo
simulation at given parameters of the potential and a modification of the potential according to
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a recipe. The recipe was derived from the diagrammatic density expansion of g(r) (e.g. [14]).

g(r) = exp

(
−u(r)

kBT

)
γ (r) = exp

(
−u(r)

kBT

) (
1 + ρa(r) + ρ2

2! b(r) + · · ·
)

, (5)

where kB is the Boltzmann constant, T is the temperature and the a(r), b(r) and further
coefficients in γ (r) are sums of different cluster integrals. Schommers supposed that if
one finds a u0(r) potential that is sufficiently close to the real u(r) potential, then one can
approximate γ0(r) with γ (r). Of course, this is not perfectly true, so the potential cannot be
determined in one step. An iterative method was proposed and the update of the potential at the
i th iteration was

ui (r) = ui−1(r) − kBT ln

[
gexp(r)

gi−1(r)

]
. (6)

The method could be easily generalized to multi-component systems, where the
corresponding partial functions appeared in equation (6) [13]. The extension was successfully
applied 13 years later by Soper [17]. At first, it was called the empirical potential Monte Carlo
method. We refer to this g(r) based method as EPMC in this review. Several new features were
built in the method:

(a) The tabulated potential was smoothed at each iteration.
(b) A damping factor was applied to suppress oscillations and numerical noises at large r .
(c) The pair potential was divided into two parts: a reference potential that was not changed

during the iteration, and the rest, that was refined in each iteration step.

A suitable choice of the reference potential helped to start with a good initial guess, to keep the
structure of the molecule for molecular systems, to take into account the long-range interactions
and to take care of the excluded volume. Soper showed also that equation (6) is a convergent
recipe, if the system could be described with pair-wise additive pair interactions.

Soper and his co-workers modified the scheme in 1999 [47], and it was renamed the
empirical potential structure refinement method. We refer to this technique as EPSR1999.
The potential was divided into a harmonic part (responsible for intramolecular interactions), a
reference part (which contains mostly Lennard-Jones interactions), a repulsive part (to avoid
unphysical overlaps) and an empirical potential part. The latter was modified now on the
basis of the difference between the experimental and simulated partial structure factors. It was
Fourier transformed from the q space into the r one and it was smoothed to remove artefacts
of experimental uncertainty and truncation. This �i−1

αβ (r) difference was used to get the new
partial empirical potential.

ui
EPαβ(r) = ui−1

EPαβ(r) − kBT ln

[
1 + �i−1

αβ (r)

gi−1
αβ (r)

]
. (7)

Recently, new concepts were introduced into the method [48]. The empirical potentials
uEPαβ(r) were represented with a series expansion of Poisson functions. The mth coefficients of
the expansion, Cmαβs, remained the same, if one Fourier transformed the potential (to uEPαβ(q))
and the Poisson functions into the inverse space. The difference between the experimental total
structure factor and the simulated one at the i th iteration of the potential was calculated. The
difference was expanded in the inverse-space Poisson functions. We denote these coefficients
as �Ci

mαβ j , where j is the sequence number of the measurement with the upper value of Nmeas.
They act on the coefficients of the empirical potentials.

Ci+1
mαβ = Ci

mαβ +
Nmeas∑
j=1

w−1
jαβ�Ci

mαβ j . (8)
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Soper defined a special weight matrix with w jαβ elements, where the traditional
coefficients were multiplied with a feedback factor ( f ) of the [0; 1] interval and the matrix
was extended with a diagonal part in which (1 − f ) appeared. The feedback factor can be
interpreted as one’s trust of the experimental data and (1 − f ) as that of the simulation results.
The inverse of the matrix was calculated in a special way [48], and it was used both in the
potential modification recipe and in the final determination of the partial structure factors.

3.2. The LWR scheme

The Levesque, Weis and Reatto (LWR) scheme is also an iterative method with a simulation and
a potential modification in each iteration step [34]. The potential modification part is related
to the modified hypernetted chain equation. The first guess potential is obtained by this theory
applying a criterion to choose the best hard-sphere bridge function. The success of the method
is based on the generality theorem of Rosenfeld and Ashcroft [61]. The iterative refinement
steps can be interpreted as corrector steps of the first predictor step. One needs the knowledge
of the experimental and the simulated g(r)s and S(q)s for the potential modification. It uses
the direct correlation function, c(r), that can be obtained by the Fourier transformation of the
corresponding S(q)−1

S(q)
[14].

ui (r) = ui−1(r) + kBT

(
ln

[
gi−1(r)

gexp(r)

]
+ ci−1(r) − cexp(r) − gi−1(r) + gexp(r)

)
. (9)

Unfortunately, there are several Fourier transformations enhancing the uncertainty of the
truncation and discreteness effects. The LWR scheme has been applied on partial functions of
multi-component systems as well [42].

3.3. Partial derivative methods

The following derivation is according to our previous studies [52, 53], in which we presented
a generalization of the Lyubartsev–Laaksonen idea [43]. An average of a quantity B j (�, P),
which is a function of the phase-space coordinates (�) and the parameters of the potential
energy (P), can be calculated in the canonical ensemble as

〈
B j

(
�, P

)〉 =
∫

B j
(
�, P

)
exp

(
− 1

kBT H
(
�, P

))
d�

∫
exp

(
− 1

kBT H
(
�, P

))
d�

, (10)

where H (�, P) is the Hamiltonian of the system. 〈B j (�, P)〉 depends on the pi elements of
P . The crucial point is the calculation of the partial derivatives in these methods. They can be
calculated according to fluctuation formulae [16, 32, 43, 52, 53, 62]:

∂
〈
B j

(
�, P

)〉
∂pi

= − 1

kBT

(〈
B j

(
�, P

) ∂ H (P)

∂pi

〉
− 〈

B j
(
�, P

)〉 〈∂ H (P)

∂pi

〉)
+

〈
∂ B j(�, P)

∂pi

〉
.

(11)

The partial derivatives of the Hamiltonian are rather simple for most of the potentials. If
B j (�, P) ≡ B j(�), the last term disappears from equation (11).

Applying a Taylor expansion, a set of linear equations can be constructed in which the
�pis are the unknowns.

�
〈
B j

(
�, P

)〉 = Bexp
j − 〈

B j
(
�, P

)〉simulated =
np∑
i

∂
〈
B j

(
�, P

)〉
∂pi

�pi + O
(
�P2

)
. (12)
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Each data point of an experimental quantity, like the points of a structure factor, can be
used as a separate Bexp

j , so one has as many independent linear equations as data points. Since
the linear dependence of B j (�, P) on the potential parameters is seldom fulfilled, the correct
parameters cannot be obtained in one step, and the technique has to be repeated in an iterative
manner: one iteration step contains a simulation and the modification of the potential. If the
number of data points is equal to the number of parameters, one can solve the set of linear
equations uniquely. Lyubartsev and Laaksonen proposed this case. They used g(r)s or gαβ(r)s
as experimental data, and tabulated pair potentials at the same grids as in the pair-correlation
function. In this way, they got a definite answer, but it was very sensitive to the experimental
and simulation uncertainties as it is general in the definite solution of linear equations.

We proposed using more data points (equations) than parameters. In this overdetermined
case, one can use multidimensional linear fits, or more sophisticated methods, like the Gauss–
Newton–Marquardt nonlinear parameter fit (e.g. [63]). Here the merit function can be the
maximum likelihood criteria incorporating the uncertainty of the experimental data in the form
of weights (W ). The potential modification in one iteration step was the following for the
nonlinear fit:

Pi = Pi−1 + (
J (i−1)T W J + λi−1 I

)−1
J (i−1)T W

(
Bexp − Bi−1

)
, (13)

where J is the Jacobian, I is the matrix of unity, and λ is the Marquardt parameter. We chose
total S(q) functions as experimental data. In this way, we avoided two doubtful steps: the
separation of the partial functions by solution of linear equations and the inverse to real space
Fourier transformation. Instead of them we could simply linearly combine the partials to total
functions and we were able to transform sufficiently good quality g(r)s of simulations to S(q)s.

We mention here that this potential refinement method is not restricted to diffraction
data; it can be used also on other experimental data, as was shown by Bourasseau et al [32].
Simultaneous use of different data types is possible, as well [53].

3.4. Manual iteration

Experts of diffraction data processing usually have ideas about the relationship among
potentials and structural functions. For example, it is widely believed that the excluded volume
has a very large impact on the structure of dense liquids. The pair-correlation function is
hardly sensitive to potential changes, which do not affect the excluded volume of the particles.
This means also, that the non-negligible experimental error of the present instrumentations
causes large uncertainty in any potential determination from diffraction data. One can find
some studies, where the relationship between the structure factor and the pair potential is
discussed [64], also by a sophisticated manner with eigenvectors [65]. Dzugutov et al applied
another method [38]. They used iterative simulations to reproduce experimental data. The
potential was modified several times, e.g. by switching off a different part of the pair potential
to find the connection between the potential and the structure. Reasonably good agreement
was obtained between the experimental and simulation data. In spite of the conclusion in their
first paper, later on the LWR scheme was used by them. They found it more feasible than the
manual potential refinement [39]. It is worthwhile noting that Dzugutov’s opinion did not agree
with the previous studies [64, 65] on the empirical connection between the structure factor and
the potential [38].

3.5. Method of Almarza and Lomba

In 2003, Almarza and Lomba [55] proposed a method (AL2003) to speed up the usual iterative
techniques in which one iteration step consisted of an equilibrium simulation and a potential
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variation. They suggested the use of one non-equilibrium simulation, in which the potential was
changed before the total equilibration of the system. The potential was regularly refined after
small periods of the simulation. The potential variation was rather small and was decreased as
the g(r)s converged to the experimental data.

1

kBT
ui(r) = 1

kBT
ui−1(r) + γ i−1 gi−1(r) − gexp(r)

�g(r)
〈�g(r)〉 , (14)

where γ i−1 denotes that the parameter decreased regularly by multiplication with a number
less than one, �g(r) is the supposed experimental and simulation uncertainty, and 〈�g(r)〉 is
an average over the r space of the experimental data.

They modified the recipe, fitting it to partial structure factors (AL2004) [56]. A real-space
pair potential was defined as a Fourier transform of an inverse-space potential, v(q):

1

kBT
u(r) =

Nq∑
k=1

v(qk)
sin(qkr)

qkr
, (15)

where Nq denotes the number of inverse-space components. The Fourier representatives were
regularly refined in the simulations:

vi (qk) = vi (qk) + γ i−1 Si−1(qk) − Sexp(qk)

�S(qk)
〈�S(q)〉 . (16)

�S(qk) is the supposed experimental and simulation uncertainty, and 〈�S(q)〉 is its q-
space averaged value. The method on the pair-correlation function was extended to triplet-
correlation functions by Russ et al [57]. Here video microscopy was used to determine both
the pair- and the triplet-correlation functions in colloidal suspensions and two- and three-body
potentials were successfully derived.

3.6. Monte Carlo methods in extreme ensembles

Rutledge suggested a Monte Carlo method in the so-called semigrand ensemble in 2001 [54].
He derived the method on the theoretical background of polydisperse particles in the grand-
canonical space. The potential of mean force was generalized for the polydisperse chemical
potential. This chemical potential appeared in the acceptance criterion of the Monte Carlo
process. Therefore, it affected the chosen distribution function that was a pair-correlation
function. The potential function (chemical potential here) was refined regularly during the
Monte Carlo simulation. The variation formula was logarithmic, similar to the Schommers
method.

In 2003 Wilding generalized the method [58]. He introduced similar numerical
considerations to speed up the simulations as Almarza and Lomba did. It was suggested
to vary the generalized potential function μ(σ), e.g. chemical potential, regularly before the
system reaches total equilibrium. The form was similar to that of Almarza and Lomba: pexp(σ )

denoted the desired experimental distribution and γ had the same meaning as in equations (14)
and (16).

μi (σ ) = μi−1(σ ) + γ i−1 pi−1(σ ) − pexp(σ )

pexp(σ )
. (17)

The methods of Rutledge and Wilding showed the feasibility of extreme ensemble Monte
Carlo simulations in potential refinements. If there is an experimentally determined distribution
and one is interested in a potential-like quantity that influences this distribution, one may try
to construct a Monte Carlo procedure in a specific ensemble, in which this potential function
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emerges in the acceptance criterion of the Monte Carlo procedure. It was shown by these
authors that both the Schommers-like form with theoretical background (quasi-equilibrium
simulations) and the Almarza and Lomba-like practical recipes (non-equilibrium simulations)
were useable here, as well.

3.7. Born–Green–Yvon hierarchy and the reverse Monte Carlo method

It is an old result of statistical mechanics, that an exact integro-differential equation links
together the pair-correlation function, the triplet-correlation function and the pair potential in
equilibrium systems, if the system is in equilibrium and it can be described by pair-wise additive
pair potentials (see e.g. [1]).

− d

dr

(
ln g(r) + 1

kBT
u(r)

)
= 1

kBT
πρ

∫ ∞

0
ds

du(s)

ds

∫ r+s

|r−s|
dt

t (r 2 + s2 − t2)

r 2

g(r, s, t)

g(r)
.

(18)

If one knows both the pair- and the triplet-correlation functions of a liquid, theoretically
the pair potential can be obtained. This feature was shown by us practically in 1999 [49, 50].
We calculated the triplet- and the pair-correlation functions of Metropolis Monte Carlo
configurations, and used the data in the numerical solution of the Born–Green–Yvon equation.
The results were approximately correct, but to reach the exact solution one should use
infinitely small grids with high statistical accuracy in the determination of the correlation
functions. We applied the method also on configurations provided by reverse Monte Carlo
simulations. Depending on the details of the reverse Monte Carlo simulation, more or less
correct pair potentials were obtained. The discrepancy was caused partly by the inappropriate
configuration sampling of the phase space, which is a weakness of the reverse Monte Carlo
method [24, 49, 51, 66–68]. The performance of this combined method did not allow using it
routinely, but it would become a powerful method, if the correct sampling of the phase space
can be achieved in a reverse Monte Carlo-type procedure. The most important advantage would
be that it is a non-iterative, direct method.

3.8. Force matching

As was mentioned earlier, the starting point of the reverse Monte Carlo modelling is a
measured structure factor. It provides three-dimensional configurations, but traditional forces
and energies do not appear in the scheme. We may say that the RMC method stops half way
in the solution of the inverse problem. In contrast, the force matching methods [59, 69] start
at the middle of the inverse problem. Here, the input data are configurations together with the
classical mechanical forces acting on the particles, and the results are the classical mechanical
force functions. The methods were developed to project the force field of quantum mechanical
dynamics (e.g. Car–Parrinello simulation) onto classical mechanical force functions. It can be
performed on all atoms of the ab initio simulations, or only on a part of the atoms to derive
coarse-grained potentials [44]. In the latter case the input data can be obtained by classical
mechanical simulations, too. The main goals are a possible speed up and enlargement of the
simulation by the use of classical force functions and/or the omission of a part of the particles.
Ercolessi and Adams applied analytical potentials, while Izvekov et al used cubic-spline force
functions augmented with electrostatic interactions, in which the partial charges of the atoms
were parameters as well. We note here that the potential matching analogue of the force
matching scheme has been developed recently [67].

10
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3.9. Neural networks

Recently, an unusual resolving of the inverse problem was published by us [60]. The method of
artificial neural network, which showed its power in many successful biological applications,
was applied to the problem. Neural networks are mathematical models with adjustable
parameters. These parameters can be optimized in a way to find a good nonlinear approximate
functional relation between two functions, of which one is the input and the other is the output.
The optimization of the parameters is called training, and it is performed on known pairs of
input–output functions. Here the parameters of the neural network are set to such values,
that the network gives the best answers on input data, where one also knows the output data.
Thereafter, the trained network can be used as a black box to get answers on real problems,
where one knows only the input functions.

In our case, the input functions were structure factors supplemented with particle densities,
and the output functions were pair potentials. A few thousand known structure-factor–pair-
potential pairs were calculated on one-component Lennard-Jones, Morse and Buckingham
systems by molecular dynamic simulations. The network was trained to these data and the
performance of the method was tested on further pairs. The results were convincing, in the
sense that in most cases realistic pair potentials were obtained, which could be used at least at
the level of starting potentials for iterative potential refinement methods.

4. Comparison of the methods

4.1. Local or global change

In this section, we would like to discuss and compare some common features of the methods.
If one tries to sort the methods, one aspect could be the local or global effect of the differences
in the structural function on the potential function. For example, in the method of Schommers
and the EPMC, solely the difference at a given r value in the pair-correlation function causes
a change in the potential function at the same r distance. Similarly, in the AL2003 method
and in the extended Monte Carlo methods, the effect may be termed as local. There are several
structural functions in the LWR scheme. If one discusses the method in the form of equation (9),
the scheme is local, because the structural functions affect the potential function at the same
distance. In a detailed view, one recognizes that the real-space direct correlation function is
calculated on the basis of the structure factor that is calculated as the whole r -space Fourier
transform of the pair-correlation function. This means that the effect of c(r) can be termed
as the global impact of the difference between the experimental and simulated pair-correlation
function. Similarly, the EPSR1999 and the AL2004 schemes can be termed as local or global.
If one uses the concept of an inverse-space potential, these methods are local. Thinking only
in r -space potential results in a global method, since the difference in the S(q)s at a given
q value changes the potential at every r distance. The EPSR2005, the partial derivate, the
combined RMC-BGY and the neural network methods are global. The local–global feature of
the different methods is summarized, together with some other aspects, in table 1.

We would like to notice another aspect of the iterative methods. Some of the methods
originate from an expansion according to the density of the systems. In these cases, iteration
could give a perfect answer only in the ideal gas case. The Schommers, EPMC, Rutledge and
Lyubartsev–Laaksonen methods are such ones [58, 66].

4.2. Equilibrium or non-equilibrium simulation

The simulation and the potential modification are separate parts of one iteration in the most
of the schemes. It is a time-consuming approach, but it is necessary especially in cases in
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óth

Table 1. Selected aspects of the simulation assisted inverse methods.

Schommers EPMC EPSR1999 EPSR2005 LWR
Lyubartsev
Laaksonen

Tóth 2001,
Tóth 2003 AL2003 AL2004 Rutledge Wilding RMC + BGY

Neural
network

Local/global L L L/G G G G G L L/G L L G G
Iterative/non
equilibrium/direct

I I I I I NE NE I NE D D

Input: g(r) or S(q) g(r) g(r) S(q) S(q) g(r) g(r) g(r) or S(q) g(r) S(q) g(r) g(r) g(r) or S(q) S(q)

Input: total or
partial functions

P P P T or P P P T or P P P P P T or P P

Fourier
transformation:
r to q/q to r/no

No No r to q
and q to r

r to q r to q
and
q to r

No r to q No r to q
and
q to r

No No r to q No

Experimental
uncertainty
incorporated

No No Yes No No Yes Yes Yes No No Yes Impl.

Convergence
controlled

No No Yes No Yes Yes Yes Yes No Yes No No

Smoothing No Yes No No Yes No No No No No No

Approximate
scientific
impact of the
original articles

40 150 60 80 10 10 0 5 15 15 0

Approximate
number of
applications

10
(+40)

40 10 10 1 1 0 1 1 0 0
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which the potential modification recipes contain simulated functions which are sensitive to the
fluctuations of the simulations, e.g. the calculation of the partial derivates or direct correlation
functions. The sensitivity can be smeared out, if one allows only small changes in the potential
modification by applying constraints. This technique was applied in the AL2003, AL2004 and
Wilding methods. These recipes can be interpreted as non-equilibrium methods. There are also
direct methods, such as the RMC+BGY or neural network techniques.

4.3. Input data and Fourier transformations

The authenticity of experimental functions decreases rapidly with the number of data
processing steps. As was mentioned in the introduction, it seems to be preferable to use
total structure factors instead of partial pair-correlation functions as experimental input data.
Two consecutive mathematical procedures are necessary to get gαβ(r)s from the total structure
factors in the classical evaluation of diffraction data. If the number of the measurements with
different partial weight is higher than the number of the partials, one can solve a set of linear
equations to get partial functions. The second procedure is Fourier transformation between the
inverse-space and real-space correspondents. The order of the two mathematical procedures
can be changed. This feature is summarized in the third and fourth rows of table 1. The
methods were sorted according to the possibility of real-space and inverse-space experimental
inputs. Some of the methods can be used separately on both inputs. We have emphasized the
possibility of applying total functions or only partial ones. We note here that one can use also
partial functions in those methods that can treat total functions (RMC+BGY, Tóth, EPSR2005).
In the case of the neural network method, the use of total functions has not been implemented
yet.

There is another feature related to the inverse and real nature of input functions. The
Fourier transformations are continuous ones in equations (1) and (2), but in the reality both
the experiments and the simulations provide discrete data. Also their range is limited.
Nowadays the simulations provide mathematically reasonable pair-correlation functions, while
the experimental data are less accurate and they are rather limited in the q range. Therefore, the
real-space to inverse-space Fourier transformation is preferred. This experience gave important
momentum to the fast spreading of the reverse Monte Carlo technique. The fifth row shows the
direction of the Fourier transformations in table 1. There is no Fourier transformation in most
cases where the pair-correlation functions are the inputs. There are Fourier transformations
in both directions for most of the structure factor based methods, except our previous one
(Tóth 2001 and Tóth 2003), the RMC+BGY direct method and the newest method of Soper
(EPSR2005). Here, there are transformations only in the preferable r to q direction.

4.4. Experimental error

The next comparison of the methods concerns the possible built-in treatment of experimental
and simulation uncertainties, smoothing and damping methods. The original recipe of
Schommers did not include any of these techniques that decreased its robustness (e.g. [34]).
In the LWR scheme the simulated g(r) was extended to large r by theoretical methods in order
to reduce the truncation error of the two (backward and forward) Fourier transformations.
Unfortunately, the extension made the method become slightly arbitrary and less robust.
Dzugutov found the extension superfluous [39], while Kahl and Kristufek thought it to be
necessary. Lyubartsev and Laaksonen used a damping parameter in the potential refinement
step to reduce the changes indicated by the partial derivates. They applied further empirical
numerical control in their program package. Soper built in techniques to the Schommers
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method in EPMC: the pair-correlation functions were smoothed and an exponential decay factor
was applied to reduce the noise at large r in the potential. In the EPSR1999 technique, the
difference between the experimental and simulation structure factors is Fourier transformed into
the r space, and the function is smoothed there. We mention again, that besides the smoothing
and long-range decay functions there are auxiliary potentials in the methods of Soper. These
potentials help for example in maintaining of the excluded volumes, and therefore suppress
some possible effects of the experimental and simulation uncertainty. In the EPSR2005 method
a feedback factor was introduced to quantify one’s trust in the experimental data. The feedback
factor also played the role of a convergence and experimental error controller. Rutledge’s
extended Monte Carlo method does not include any method to smooth or take into account the
experimental method. In our method (Tóth 2003) the experimental uncertainty was included
explicitly, the effect of the partial derivates is smoothed by the method of Marquardt in the
Gauss–Newton parameterization [63], and the potentials were smoothed by Golay–Savitzky
formulae [52, 53]. The Marquardt method has similar effects on the calculation of inverse
matrices as the method used by Soper with the feedback factor in EPSR2005. In the recipes
of Almarza and Lomba the experimental uncertainty is included. Furthermore, the potential
modification is controlled via a parameter reducing the change of the potential in one iteration
step. A similar parameter can be found in the Wilding method. There were no error treatments
in the solution of the Born–Green–Yvon equation part of the RMC-BGY scheme, but the
experimental error was incorporated into the reverse Monte Carlo part. The uncertainties are not
treated explicitly in the neural network method; this method can be understood as a technique
in which the errors are taken into account in an average way.

4.5. Scientific impact of the methods

The last rows in the table 1 are intended for the scientific response and the applications of the
methods. The numbers are approximate. We checked the literature by the use of the WEB
of Science database [70]. The scientific response was approximately counted as the number
of citations on the original article or on a later published fundamental study. The number
of applications was estimated as the number of the applications of the given method and the
number of studies in which the basic concept of the method is used. We did not check if
more articles were published on the same investigation, or if a significantly modified technique
was applied. Numerical comparisons of previous methods to a new one were counted into the
applications, as well. The references are given only if there is an application or enhancement
of the method.

The methods of Soper have had the largest scientific impact and the largest number of
applications [47, 71–108]. Of course, the publication priority of Schommers implicitly means
that the EPMC, and partly the EPSR, applications belong to the Schommers method too. We
found a further ten applications [80, 109–118], in which the simple Schommers technique was
used without the developments of Soper. However, the dominating method seems to be the
EPSR due to the efforts of Alan Soper, who is trying to develop a routine program package for
analysing diffraction data in the framework of the inverse problem.

Two other methods obtained large scientific impact, the LWR scheme and the method of
Lyubartsev and Laaksonen. The role of the LWR method is unquestionable. This method
focused on the inverse problem at the moment when computational investigations started to
be widely accepted and the role of the traditional integral equation techniques decreased.
The application number of the LWR method [39, 42, 80, 81, 119–122] shows a decreasing
trend in recent years. In contrast, the Lyubartsev–Laaksonen method is becoming popular
[44–46, 123–131]. It is quite often used in a task that is not the processing of diffraction
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data, but the so-called coarse graining of potentials. This coarse graining (or atom unifying)
is used in mesoscopic simulations, in which a part of the molecules is treated as a unit with
an overall potential function [110, 132]. The approach is very useful in the speed up and
enlargement of simulations on biosystems, polymers and other large molecules. The coarse
graining of potentials seems to be an intensively investigated field of computation physics, as
one can check by a simple search in the current literature. The general procedure is similar
to the inverse problem, but detailed structural information is available, because the structural
data are collected by all-atom simulations. The main idea is to omit the unimportant atoms, to
fuse the important ones into groups, and determine an effective classical potential that correctly
reproduces the spatial distribution of these groups. The Lyubartsev–Laaksonen scheme is often
used and proposed for this coarse-graining process. Here the use of g(r)s instead of S(q)s is not
a disadvantage. The other methods (Almarza and Lomba, Tóth, Rutledge and Wilding) are less
popular. Their low impact is possibly due to the lack of user-friendly open program codes and
because the authors are partly outsiders in the data processing of diffraction data. Of course
there are a few applications. The Almarza–Lomba method was applied to determine three-
body interactions on colloids [57], and the Wilding method has some connection to the field of
polydisperse hard-sphere systems [133]. The Rutledge method initialized a macromolecular
conformation determination algorithm [134]. A variant of Tóth’s method is used in the
determination of united atom potentials on the basis of thermochemical data [32, 135]. The
RMC-BGY approach seems to be only theoretically important up to now, because it was the
first exact numerical application and proof of the Born–Green–Yvon equation.

The simple counting of the applications does not reflect why a method was applied. We
emphasize here that the purpose of most applications was not the derivation of interaction
potentials. Soper’s methods were used in the context of diffraction data evaluation and the
derived potentials were not routinely reused in later application. In contrast, the applications
related to the coarse graining of potentials (e.g. the Lyubartsev–Laaksonen method and the
applications in [32] and [135]) were devoted to providing interaction potentials for mesoscopic
simulations.

5. Conclusions

The aim of this paper was to give an overview of the simulation assisted potential determination
methods which use experimental diffraction data as input. We provided a historical overview
for both the theoretical part of the inverse problem and the different simulation assisted
methods. The first method is more than 30 years old, but the methodological research
accelerated only in the last decade. The algorithmic details were compared and we recognized
some main attempts:

(1) The improvement of the numerical algorithms to be robust on different data.
(2) The speed up of the iterative methods by non-equilibrium schemes.
(3) Trials to use as much primary diffraction information as possible, e.g. total structure

factors.
(4) Inclusion of other intuitive or empirical facts in the modelling.
(5) Development of program packages.

This last feature is connected to the application of the methods, and seems to be essential for the
spread of a method. We compared the different methods and we tried to identify the common
and the distinct attributes of the methods. The main features were summarized in table 1.

The original purpose of the simulation assisted methods was to provide interaction
functions on experimental diffraction data. Taking into account the scientific impact of the
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methods, we acknowledged the empirical structure potential refinement method of Alan Soper
as the most popular simulation assisted inverse method in the evaluation of diffraction data. At
first, this method was an enhanced-level application of the Schommers method, but after several
improvements and methodological changes a new technique was established. The success of
this method was supported by the close connection to experiments and by the available program
codes.

Recently, inverse methods seem to be important in another field of computational
chemistry and physics. The number of coarse-grained simulations has increased in recent
years, and this simulation demands an increased number of coarse-grained potentials. In
these simulations one needs interaction potentials for groups of atoms, for whole molecules,
or for entities embedded in a matrix, where the matrix appears only in an implicit way in the
interaction functions. The potentials can be obtained by inverse methods on the data of all-atom
simulations, as well. Here other attributes of the inverse methods are more important than in
the case of the diffraction data processing. The method of Lyubartsev and Laaksonen seems to
be a preferred choice in this case.
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